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Should you use DBMs for image modeling?

• Well, it depends what you want.

• Let’s just return to the DBN for a minute...
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Back to the deep belief network

• The Deep Belief Network as a 
generative model.
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Modeling Textures with DBNs
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Modeling Textures with DBNs
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Why does depth help?
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Depth helps mixing
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1-layer model 2-layer model 3-layer model
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Why does depth help mixing?

• There are two perspective on why depth helps mixing:

1. Noise is induced in each successive layer added to the model, 
smoothing out the distribution.

2. The highly-structured manifold on which the data lies becomes 
unfolded and “simpler” at higher layers of representation.

• The underlying factors of variation are being disentangled.
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Mixing and the model
• We face a big problem when training lower layer models

• If stochasticity in the lower layers does not express natural variations 
in your dataset, the ability of your model to mix will diminish with 
training. 
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MNIST dataset
1st layer features (RBM)
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DBNs and DBMs: in the same boat
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Deep Boltzmann machine Deep belief network

It is difficult to take either one too seriously as a model of natural images.

Why? Because stochasticity in the lower layers will push the 
sample off the manifold of natural images
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Directed generative models
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Deep directed graphical models
• The Variational Autoencoder model:

- Kingma and Welling, Auto-Encoding Variational Bayes, International 
Conference on Learning Representations (ICLR) 2014.

- Rezende, Mohamed and Wierstra, Stochastic back-propagation and 
variational inference in deep latent Gaussian models. ArXiv.

• Unlike RBM, DBM, here we are interested in deep directed graphical 
models:

9

y :

x :

z :

9



IFT6266: Representation (Deep) Learning  —  Aaron Courville

Latent variable generative model

• latent variable model:  learn a mapping from some latent variable z 
to a complicated distribution on x.

• Can we learn to decouple the true explanatory factors underlying 
the data distribution? E.g. separate identity and expression in face images
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p(z) = something simple p(x | z) = f(z)

Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007

p(x) =

∫
p(x, z) dz where p(x, z) = p(x | z)p(z)
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Variational autoencoder (VAE) approach

• Leverage neural networks to learn a latent variable model. 
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p(z) = something simple p(x | z) = f(z)

p(x) =

∫
p(x, z) dz where p(x, z) = p(x | z)p(z)
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What VAE can do?
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p�(x|z) with the learned parameters �.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p�(z) = N (0, I) and the
posterior approximation q⇥(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and ⇥
denote the variational mean and s.d. evaluated at datapoint i, and let µj and ⇥j simply denote the
j-th element of these vectors. Then:
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The inference / learning challenge

• Where does z come from? — The classic directed model dilemma.

• Computing the posterior                  is intractable.

• We need it to train the directed model.
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Variational Autoencoder (VAE)

• Where does z come from? — The classic DAG problem.

• The VAE approach: introduce an inference machine                that 
learns to approximate the posterior               .

- Define a variational lower bound on the data likelihood:

• What is               ?

14

qφ(z | x)
pθ(z | x)

pθ(x) ≥ L(θ,φ, x)

qφ(z | x)

L(�, �, x) = Eq�(z|x) [log p�(x, z) � log q�(z | x)]

= Eq�(z|x) [log p�(x | z) + log p�(z) � log q�(z | x)]

= �DKL (q�(z | x)� p�(z)) + Eq�(z|x) [log p�(x | z)]
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VAE Inference model
• The VAE approach: introduce an inference model                that 

learns to approximates the intractable posterior                by 
optimizing the variational lower bound: 

• We parameterize                with another neural network:
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qφ(z | x)
pθ(z | x)

qφ(z | x)

L(θ,φ, x) = −DKL (qφ(z | x)∥ pθ(z)) + Eqφ(z|x) [log pθ(x | z)]

qφ(z | x) = q(z; g(x,φ)) pθ(x | z) = p(x; f(z, θ))

15



IFT6266: Representation (Deep) Learning  —  Aaron Courville

Reparametrization trick
• Adding a few details + one really important trick

• Let’s consider z to be real and

• Parametrize z as                                  where

• (optional) Parametrize x a                                  where

16

x :

g(z) :

qφ(z | x) = N (z;µz(x),σz(x))

{ {µz(x) σz(x) z :

f(z) :

σx(z) {

µx(z) {

z = µz(x) + σz(x)ϵz ϵz = N (0, 1)

ϵx = N (0, 1)x = µx(z) + σx(z)ϵx
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Training with backpropagation!
• Due to a reparametrization trick, we can simultaneously train both 

the generative model                  and the inference model              
by optimizing the variational bound using gradient backpropagation.

17

qφ(z | x)pθ(x | z)

Forward propagation

Backward propagation

z

x x̂

qφ(z | x) pθ(x | z)

Objective function: L(θ,φ, x) = −DKL (qφ(z | x)∥ pθ(z)) + Eqφ(z|x) [log pθ(x | z)]
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Relative performance of VAE

18

Figure from Diederik P. Kingma & Max Welling  

Figure 3: Comparison of AEVB to the wake-sleep algorithm and Monte Carlo EM, in terms of the
estimated marginal likelihood, for a different number of training points. Monte Carlo EM is not an
on-line algorithm, and (unlike AEVB and the wake-sleep method) can’t be applied efficiently for
the full MNIST dataset.

Visualisation of high-dimensional data If we choose a low-dimensional latent space (e.g. 2D),
we can use the learned encoders (recognition model) to project high-dimensional data to a low-
dimensional manifold. See appendix A for visualisations of the 2D latent manifolds for the MNIST
and Frey Face datasets.

6 Conclusion

We have introduced a novel estimator of the variational lower bound, Stochastic Gradient VB
(SGVB), for efficient approximate inference with continuous latent variables. The proposed estima-
tor can be straightforwardly differentiated and optimized using standard stochastic gradient meth-
ods. For the case of i.i.d. datasets and continuous latent variables per datapoint we introduce an
efficient algorithm for efficient inference and learning, Auto-Encoding VB (AEVB), that learns an
approximate inference model using the SGVB estimator. The theoretical advantages are reflected in
experimental results.

7 Future work

Since the SGVB estimator and the AEVB algorithm can be applied to almost any inference and
learning problem with continuous latent variables, there are plenty of future directions: (i) learning
hierarchical generative architectures with deep neural networks (e.g. convolutional networks) used
for the encoders and decoders, trained jointly with AEVB; (ii) time-series models (i.e. dynamic
Bayesian networks); (iii) application of SGVB to the global parameters; (iv) supervised models
with latent variables, useful for learning complicated noise distributions.

8

Note: MCEM is Expectation Maximization, where p(z | x) is sampled using 
Hybrid (Hamiltonian) Monte Carlo 
For more see: Markov Chain Monte Carlo and Variational Inference: Bridging the Gap, 
Tim Salimans, Diederik P. Kingma, Max Welling
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http://arxiv.org/find/stat/1/au:+Salimans_T/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Salimans_T/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Kingma_D/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Kingma_D/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Welling_M/0/1/0/all/0/1
http://arxiv.org/find/stat/1/au:+Welling_M/0/1/0/all/0/1


IFT6266: Representation (Deep) Learning  —  Aaron Courville

Effect of KL term: component collapse
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Component collapsing

Figure from Laurent Dinh & Vincent Dumoulin

19



IFT6266: Representation (Deep) Learning  —  Aaron Courville

Component collapse & depth

20
Figures from Laurent Dinh & Vincent Dumoulin

Depth

Depth
Deeper model:

more component collapse

Deep model:
some component collapse
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Component collapse & decoder weights
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Figure from Laurent Dinh & Vincent Dumoulin

Effects on the model

Decoder weight norms

21



IFT6266: Representation (Deep) Learning  —  Aaron Courville

Component collapse & learned variance
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Figure from Laurent Dinh & Vincent Dumoulin

Effects on the model
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Semi-supervised Learning with Deep Generative Models

They study two basic approaches:

• M1: Standard unsupervised feature learning (“self-taught learning”)

- Train features z on unlabeled data, train a classifier to map from z to label y.

- Generative model: (recall that x = data, z = latent features)

• M2: Generative semi-supervised model.

23

Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, Max Welling

by training feed-forward classifiers with an additional penalty from an auto-encoder or other unsu-
pervised embedding of the data (Ranzato and Szummer, 2008; Weston et al., 2012). The Manifold
Tangent Classifier (MTC) (Rifai et al., 2011) trains contrastive auto-encoders (CAEs) to learn the
manifold on which the data lies, followed by an instance of TangentProp to train a classifier that is
approximately invariant to local perturbations along the manifold. The idea of manifold learning
using graph-based methods has most recently been combined with kernel (SVM) methods in the At-
las RBF model (Pitelis et al., 2014) and provides amongst most competitive performance currently
available.

In this paper, we instead, choose to exploit the power of generative models, which recognise the
semi-supervised learning problem as a specialised missing data imputation task for the classifica-
tion problem. Existing generative approaches based on models such as Gaussian mixture or hidden
Markov models (Zhu, 2006), have not been very successful due to the need for a large number
of mixtures components or states to perform well. More recent solutions have used non-parametric
density models, either based on trees (Kemp et al., 2003) or Gaussian processes (Adams and Ghahra-
mani, 2009), but scalability and accurate inference for these approaches is still lacking. Variational
approximations for semi-supervised clustering have also been explored previously (Li et al., 2009;
Wang et al., 2009).

Thus, while a small set of generative approaches have been previously explored, a generalised and
scalable probabilistic approach for semi-supervised learning is still lacking. It is this gap that we
address through the following contributions:

• We describe a new framework for semi-supervised learning with generative models, em-
ploying rich parametric density estimators formed by the fusion of probabilistic modelling
and deep neural networks.

• We show for the first time how variational inference can be brought to bear upon the prob-
lem of semi-supervised classification. In particular, we develop a stochastic variational
inference algorithm that allows for joint optimisation of both model and variational param-
eters, and that is scalable to large datasets.

• We demonstrate the performance of our approach on a number of data sets providing state-
of-the-art results on benchmark problems.

• We show qualitatively generative semi-supervised models learn to separate the data classes
(content types) from the intra-class variabilities (styles), allowing in a very straightforward
fashion to simulate analogies of images on a variety of datasets.

2 Deep Generative Models for Semi-supervised Learning
We are faced with data that appear as pairs (X,Y) = {(x1, y1), . . . , (xN

, y
N

)}, with the i-th ob-
servation x

i

2 RD and the corresponding class label y
i

2 {1, . . . , L}. Observations will have
corresponding latent variables, which we denote by z

i

. We will omit the index i whenever it is clear
that we are referring to terms associated with a single data point. In semi-supervised classification,
only a subset of the observations have corresponding class labels; we refer to the empirical distribu-
tion over the labelled and unlabelled subsets as ep

l

(x, y) and ep
u

(x), respectively. We now develop
models for semi-supervised learning that exploit generative descriptions of the data to improve upon
the classification performance that would be obtained using the labelled data alone.

Latent-feature discriminative model (M1): A commonly used approach is to construct a model
that provides an embedding or feature representation of the data. Using these features, a separate
classifier is thereafter trained. The embeddings allow for a clustering of related observations in a
latent feature space that allows for accurate classification, even with a limited number of labels.
Instead of a linear embedding, or features obtained from a regular auto-encoder, we construct a
deep generative model of the data that is able to provide a more robust set of latent features. The
generative model we use is:

p(z) = N (z|0, I); p
✓

(x|z) = f(x; z,✓), (1)

where f(x; z,✓) is a suitable likelihood function (e.g., a Gaussian or Bernoulli distribution) whose
probabilities are formed by a non-linear transformation, with parameters ✓, of a set of latent vari-
ables z. This non-linear transformation is essential to allow for higher moments of the data to be
captured by the density model, and we choose these non-linear functions to be deep neural networks.

2

x

z

x

z
y

Approximate samples from the posterior distribution over the latent variables p(z|x) are used as fea-
tures to train a classifier that predicts class labels y, such as a (transductive) SVM or multinomial
regression. Using this approach, we can now perform classification in a lower dimensional space
since we typically use latent variables whose dimensionality is much less than that of the obser-
vations. These low dimensional embeddings should now also be more easily separable since we
make use of independent latent Gaussian posteriors whose parameters are formed by a sequence of
non-linear transformations of the data. This simple approach results in improved performance for
SVMs, and we demonstrate this in section 4.

Generative semi-supervised model (M2): We propose a probabilistic model that describes the data
as being generated by a latent class variable y in addition to a continuous latent variable z. The data
is explained by the generative process:

p(y) = Cat(y|⇡); p(z) = N (z|0, I); p
✓

(x|y, z) = f(x; y, z,✓), (2)
where Cat(y|⇡) is the multinomial distribution, the class labels y are treated as latent variables if
no class label is available and z are additional latent variables. These latent variables are marginally
independent and allow us, in case of digit generation for example, to separate the class specifica-
tion from the writing style of the digit. As before, f(x; y, z,✓) is a suitable likelihood function,
e.g., a Bernoulli or Gaussian distribution, parameterised by a non-linear transformation of the latent
variables. In our experiments, we choose deep neural networks as this non-linear function. Since
most labels y are unobserved, we integrate over the class of any unlabelled data during the infer-
ence process, thus performing classification as inference. Predictions for any missing labels are
obtained from the inferred posterior distribution p

✓

(y|x). This model can also be seen as a hybrid
continuous-discrete mixture model where the different mixture components share parameters.

Stacked generative semi-supervised model (M1+M2): We can combine these two approaches by
first learning a new latent representation z1 using the generative model from M1, and subsequently
learning a generative semi-supervised model M2, using embeddings from z1 instead of the raw data
x. The result is a deep generative model with two layers of stochastic variables: p

✓

(x, y, z1, z2) =
p(y)p(z2)p✓(z1|y, z2)p✓(x|z1), where the priors p(y) and p(z2) equal those of y and z above, and
both p

✓

(z1|y, z2) and p
✓

(x|z1) are parameterised as deep neural networks.

3 Scalable Variational Inference
3.1 Lower Bound Objective
In all our models, computation of the exact posterior distribution is intractable due to the nonlinear,
non-conjugate dependencies between the random variables. To allow for tractable and scalable
inference and parameter learning, we exploit recent advances in variational inference (Kingma and
Welling, 2014; Rezende et al., 2014). For all the models described, we introduce a fixed-form
distribution q

�

(z|x) with parameters � that approximates the true posterior distribution p(z|x). We
then follow the variational principle to derive a lower bound on the marginal likelihood of the model
– this bound forms our objective function and ensures that our approximate posterior is as close as
possible to the true posterior.

We construct the approximate posterior distribution q
�

(·) as an inference or recognition model,
which has become a popular approach for efficient variational inference (Dayan, 2000; Kingma and
Welling, 2014; Rezende et al., 2014; Stuhlmüller et al., 2013). Using an inference network, we avoid
the need to compute per data point variational parameters, but can instead compute a set of global
variational parameters �. This allows us to amortise the cost of inference by generalising between
the posterior estimates for all latent variables through the parameters of the inference network, and
allows for fast inference at both training and testing time (unlike with VEM, in which we repeat
the generalized E-step optimisation for every test data point). An inference network is introduced
for all latent variables, and we parameterise them as deep neural networks whose outputs form the
parameters of the distribution q

�

(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q

�

(z|x) for the latent variable z. For the generative semi-supervised
model (M2), we introduce an inference model for each of the latent variables z and y, which we we
assume has a factorised form q

�

(z, y|x) = q
�

(z|x)q
�

(y|x), specified as Gaussian and multinomial
distributions respectively.

M1: q
�

(z|x) = N (z|µ
�

(x), diag(�2
�

(x))), (3)

M2: q
�

(z|y,x) = N (z|µ
�

(y,x), diag(�2
�

(x))); q
�

(y|x) = Cat(y|⇡
�

(x)), (4)
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(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q
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(z|x) for the latent variable z. For the generative semi-supervised
model (M2), we introduce an inference model for each of the latent variables z and y, which we we
assume has a factorised form q
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• M1+M2: Combination semi-supervised model 

- Train generative semi-supervised model on unsupervised features z1 on 
unlabeled data, train a classifier to map from z1 to label z1.
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Approximate samples from the posterior distribution over the latent variables p(z|x) are used as fea-
tures to train a classifier that predicts class labels y, such as a (transductive) SVM or multinomial
regression. Using this approach, we can now perform classification in a lower dimensional space
since we typically use latent variables whose dimensionality is much less than that of the obser-
vations. These low dimensional embeddings should now also be more easily separable since we
make use of independent latent Gaussian posteriors whose parameters are formed by a sequence of
non-linear transformations of the data. This simple approach results in improved performance for
SVMs, and we demonstrate this in section 4.

Generative semi-supervised model (M2): We propose a probabilistic model that describes the data
as being generated by a latent class variable y in addition to a continuous latent variable z. The data
is explained by the generative process:

p(y) = Cat(y|⇡); p(z) = N (z|0, I); p
✓

(x|y, z) = f(x; y, z,✓), (2)
where Cat(y|⇡) is the multinomial distribution, the class labels y are treated as latent variables if
no class label is available and z are additional latent variables. These latent variables are marginally
independent and allow us, in case of digit generation for example, to separate the class specifica-
tion from the writing style of the digit. As before, f(x; y, z,✓) is a suitable likelihood function,
e.g., a Bernoulli or Gaussian distribution, parameterised by a non-linear transformation of the latent
variables. In our experiments, we choose deep neural networks as this non-linear function. Since
most labels y are unobserved, we integrate over the class of any unlabelled data during the infer-
ence process, thus performing classification as inference. Predictions for any missing labels are
obtained from the inferred posterior distribution p

✓

(y|x). This model can also be seen as a hybrid
continuous-discrete mixture model where the different mixture components share parameters.

Stacked generative semi-supervised model (M1+M2): We can combine these two approaches by
first learning a new latent representation z1 using the generative model from M1, and subsequently
learning a generative semi-supervised model M2, using embeddings from z1 instead of the raw data
x. The result is a deep generative model with two layers of stochastic variables: p

✓

(x, y, z1, z2) =
p(y)p(z2)p✓(z1|y, z2)p✓(x|z1), where the priors p(y) and p(z2) equal those of y and z above, and
both p

✓

(z1|y, z2) and p
✓

(x|z1) are parameterised as deep neural networks.

3 Scalable Variational Inference
3.1 Lower Bound Objective
In all our models, computation of the exact posterior distribution is intractable due to the nonlinear,
non-conjugate dependencies between the random variables. To allow for tractable and scalable
inference and parameter learning, we exploit recent advances in variational inference (Kingma and
Welling, 2014; Rezende et al., 2014). For all the models described, we introduce a fixed-form
distribution q

�

(z|x) with parameters � that approximates the true posterior distribution p(z|x). We
then follow the variational principle to derive a lower bound on the marginal likelihood of the model
– this bound forms our objective function and ensures that our approximate posterior is as close as
possible to the true posterior.

We construct the approximate posterior distribution q
�

(·) as an inference or recognition model,
which has become a popular approach for efficient variational inference (Dayan, 2000; Kingma and
Welling, 2014; Rezende et al., 2014; Stuhlmüller et al., 2013). Using an inference network, we avoid
the need to compute per data point variational parameters, but can instead compute a set of global
variational parameters �. This allows us to amortise the cost of inference by generalising between
the posterior estimates for all latent variables through the parameters of the inference network, and
allows for fast inference at both training and testing time (unlike with VEM, in which we repeat
the generalized E-step optimisation for every test data point). An inference network is introduced
for all latent variables, and we parameterise them as deep neural networks whose outputs form the
parameters of the distribution q

�

(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q

�

(z|x) for the latent variable z. For the generative semi-supervised
model (M2), we introduce an inference model for each of the latent variables z and y, which we we
assume has a factorised form q

�

(z, y|x) = q
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(z|x)q
�

(y|x), specified as Gaussian and multinomial
distributions respectively.

M1: q
�
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Approximate samples from the posterior distribution over the latent variables p(z|x) are used as fea-
tures to train a classifier that predicts class labels y, such as a (transductive) SVM or multinomial
regression. Using this approach, we can now perform classification in a lower dimensional space
since we typically use latent variables whose dimensionality is much less than that of the obser-
vations. These low dimensional embeddings should now also be more easily separable since we
make use of independent latent Gaussian posteriors whose parameters are formed by a sequence of
non-linear transformations of the data. This simple approach results in improved performance for
SVMs, and we demonstrate this in section 4.

Generative semi-supervised model (M2): We propose a probabilistic model that describes the data
as being generated by a latent class variable y in addition to a continuous latent variable z. The data
is explained by the generative process:

p(y) = Cat(y|⇡); p(z) = N (z|0, I); p
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(x|y, z) = f(x; y, z,✓), (2)
where Cat(y|⇡) is the multinomial distribution, the class labels y are treated as latent variables if
no class label is available and z are additional latent variables. These latent variables are marginally
independent and allow us, in case of digit generation for example, to separate the class specifica-
tion from the writing style of the digit. As before, f(x; y, z,✓) is a suitable likelihood function,
e.g., a Bernoulli or Gaussian distribution, parameterised by a non-linear transformation of the latent
variables. In our experiments, we choose deep neural networks as this non-linear function. Since
most labels y are unobserved, we integrate over the class of any unlabelled data during the infer-
ence process, thus performing classification as inference. Predictions for any missing labels are
obtained from the inferred posterior distribution p

✓

(y|x). This model can also be seen as a hybrid
continuous-discrete mixture model where the different mixture components share parameters.

Stacked generative semi-supervised model (M1+M2): We can combine these two approaches by
first learning a new latent representation z1 using the generative model from M1, and subsequently
learning a generative semi-supervised model M2, using embeddings from z1 instead of the raw data
x. The result is a deep generative model with two layers of stochastic variables: p
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(x, y, z1, z2) =
p(y)p(z2)p✓(z1|y, z2)p✓(x|z1), where the priors p(y) and p(z2) equal those of y and z above, and
both p

✓
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(x|z1) are parameterised as deep neural networks.

3 Scalable Variational Inference
3.1 Lower Bound Objective
In all our models, computation of the exact posterior distribution is intractable due to the nonlinear,
non-conjugate dependencies between the random variables. To allow for tractable and scalable
inference and parameter learning, we exploit recent advances in variational inference (Kingma and
Welling, 2014; Rezende et al., 2014). For all the models described, we introduce a fixed-form
distribution q
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(z|x) with parameters � that approximates the true posterior distribution p(z|x). We
then follow the variational principle to derive a lower bound on the marginal likelihood of the model
– this bound forms our objective function and ensures that our approximate posterior is as close as
possible to the true posterior.

We construct the approximate posterior distribution q
�

(·) as an inference or recognition model,
which has become a popular approach for efficient variational inference (Dayan, 2000; Kingma and
Welling, 2014; Rezende et al., 2014; Stuhlmüller et al., 2013). Using an inference network, we avoid
the need to compute per data point variational parameters, but can instead compute a set of global
variational parameters �. This allows us to amortise the cost of inference by generalising between
the posterior estimates for all latent variables through the parameters of the inference network, and
allows for fast inference at both training and testing time (unlike with VEM, in which we repeat
the generalized E-step optimisation for every test data point). An inference network is introduced
for all latent variables, and we parameterise them as deep neural networks whose outputs form the
parameters of the distribution q
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(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q
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(z|x) for the latent variable z. For the generative semi-supervised
model (M2), we introduce an inference model for each of the latent variables z and y, which we we
assume has a factorised form q
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• Appoximate posterior (encoder model)

- Following the VAE strategy we parametrize the approximate posterior with a 
high capacity model, like a MLP or some other deep model (convnet, RNN, 
etc).

-               and              are parameterized by deep MLPs, that can share 
parameters.
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Approximate samples from the posterior distribution over the latent variables p(z|x) are used as fea-
tures to train a classifier that predicts class labels y, such as a (transductive) SVM or multinomial
regression. Using this approach, we can now perform classification in a lower dimensional space
since we typically use latent variables whose dimensionality is much less than that of the obser-
vations. These low dimensional embeddings should now also be more easily separable since we
make use of independent latent Gaussian posteriors whose parameters are formed by a sequence of
non-linear transformations of the data. This simple approach results in improved performance for
SVMs, and we demonstrate this in section 4.

Generative semi-supervised model (M2): We propose a probabilistic model that describes the data
as being generated by a latent class variable y in addition to a continuous latent variable z. The data
is explained by the generative process:

p(y) = Cat(y|⇡); p(z) = N (z|0, I); p
✓

(x|y, z) = f(x; y, z,✓), (2)
where Cat(y|⇡) is the multinomial distribution, the class labels y are treated as latent variables if
no class label is available and z are additional latent variables. These latent variables are marginally
independent and allow us, in case of digit generation for example, to separate the class specifica-
tion from the writing style of the digit. As before, f(x; y, z,✓) is a suitable likelihood function,
e.g., a Bernoulli or Gaussian distribution, parameterised by a non-linear transformation of the latent
variables. In our experiments, we choose deep neural networks as this non-linear function. Since
most labels y are unobserved, we integrate over the class of any unlabelled data during the infer-
ence process, thus performing classification as inference. Predictions for any missing labels are
obtained from the inferred posterior distribution p

✓

(y|x). This model can also be seen as a hybrid
continuous-discrete mixture model where the different mixture components share parameters.

Stacked generative semi-supervised model (M1+M2): We can combine these two approaches by
first learning a new latent representation z1 using the generative model from M1, and subsequently
learning a generative semi-supervised model M2, using embeddings from z1 instead of the raw data
x. The result is a deep generative model with two layers of stochastic variables: p

✓

(x, y, z1, z2) =
p(y)p(z2)p✓(z1|y, z2)p✓(x|z1), where the priors p(y) and p(z2) equal those of y and z above, and
both p
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(z1|y, z2) and p
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(x|z1) are parameterised as deep neural networks.

3 Scalable Variational Inference
3.1 Lower Bound Objective
In all our models, computation of the exact posterior distribution is intractable due to the nonlinear,
non-conjugate dependencies between the random variables. To allow for tractable and scalable
inference and parameter learning, we exploit recent advances in variational inference (Kingma and
Welling, 2014; Rezende et al., 2014). For all the models described, we introduce a fixed-form
distribution q

�

(z|x) with parameters � that approximates the true posterior distribution p(z|x). We
then follow the variational principle to derive a lower bound on the marginal likelihood of the model
– this bound forms our objective function and ensures that our approximate posterior is as close as
possible to the true posterior.

We construct the approximate posterior distribution q
�

(·) as an inference or recognition model,
which has become a popular approach for efficient variational inference (Dayan, 2000; Kingma and
Welling, 2014; Rezende et al., 2014; Stuhlmüller et al., 2013). Using an inference network, we avoid
the need to compute per data point variational parameters, but can instead compute a set of global
variational parameters �. This allows us to amortise the cost of inference by generalising between
the posterior estimates for all latent variables through the parameters of the inference network, and
allows for fast inference at both training and testing time (unlike with VEM, in which we repeat
the generalized E-step optimisation for every test data point). An inference network is introduced
for all latent variables, and we parameterise them as deep neural networks whose outputs form the
parameters of the distribution q

�

(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q

�

(z|x) for the latent variable z. For the generative semi-supervised
model (M2), we introduce an inference model for each of the latent variables z and y, which we we
assume has a factorised form q
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(z, y|x) = q
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(y|x), specified as Gaussian and multinomial
distributions respectively.
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Approximate samples from the posterior distribution over the latent variables p(z|x) are used as fea-
tures to train a classifier that predicts class labels y, such as a (transductive) SVM or multinomial
regression. Using this approach, we can now perform classification in a lower dimensional space
since we typically use latent variables whose dimensionality is much less than that of the obser-
vations. These low dimensional embeddings should now also be more easily separable since we
make use of independent latent Gaussian posteriors whose parameters are formed by a sequence of
non-linear transformations of the data. This simple approach results in improved performance for
SVMs, and we demonstrate this in section 4.

Generative semi-supervised model (M2): We propose a probabilistic model that describes the data
as being generated by a latent class variable y in addition to a continuous latent variable z. The data
is explained by the generative process:

p(y) = Cat(y|⇡); p(z) = N (z|0, I); p
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(x|y, z) = f(x; y, z,✓), (2)
where Cat(y|⇡) is the multinomial distribution, the class labels y are treated as latent variables if
no class label is available and z are additional latent variables. These latent variables are marginally
independent and allow us, in case of digit generation for example, to separate the class specifica-
tion from the writing style of the digit. As before, f(x; y, z,✓) is a suitable likelihood function,
e.g., a Bernoulli or Gaussian distribution, parameterised by a non-linear transformation of the latent
variables. In our experiments, we choose deep neural networks as this non-linear function. Since
most labels y are unobserved, we integrate over the class of any unlabelled data during the infer-
ence process, thus performing classification as inference. Predictions for any missing labels are
obtained from the inferred posterior distribution p
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(y|x). This model can also be seen as a hybrid
continuous-discrete mixture model where the different mixture components share parameters.

Stacked generative semi-supervised model (M1+M2): We can combine these two approaches by
first learning a new latent representation z1 using the generative model from M1, and subsequently
learning a generative semi-supervised model M2, using embeddings from z1 instead of the raw data
x. The result is a deep generative model with two layers of stochastic variables: p
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(x, y, z1, z2) =
p(y)p(z2)p✓(z1|y, z2)p✓(x|z1), where the priors p(y) and p(z2) equal those of y and z above, and
both p

✓

(z1|y, z2) and p
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(x|z1) are parameterised as deep neural networks.

3 Scalable Variational Inference
3.1 Lower Bound Objective
In all our models, computation of the exact posterior distribution is intractable due to the nonlinear,
non-conjugate dependencies between the random variables. To allow for tractable and scalable
inference and parameter learning, we exploit recent advances in variational inference (Kingma and
Welling, 2014; Rezende et al., 2014). For all the models described, we introduce a fixed-form
distribution q
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(z|x) with parameters � that approximates the true posterior distribution p(z|x). We
then follow the variational principle to derive a lower bound on the marginal likelihood of the model
– this bound forms our objective function and ensures that our approximate posterior is as close as
possible to the true posterior.

We construct the approximate posterior distribution q
�

(·) as an inference or recognition model,
which has become a popular approach for efficient variational inference (Dayan, 2000; Kingma and
Welling, 2014; Rezende et al., 2014; Stuhlmüller et al., 2013). Using an inference network, we avoid
the need to compute per data point variational parameters, but can instead compute a set of global
variational parameters �. This allows us to amortise the cost of inference by generalising between
the posterior estimates for all latent variables through the parameters of the inference network, and
allows for fast inference at both training and testing time (unlike with VEM, in which we repeat
the generalized E-step optimisation for every test data point). An inference network is introduced
for all latent variables, and we parameterise them as deep neural networks whose outputs form the
parameters of the distribution q
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(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q
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(z|x) for the latent variable z. For the generative semi-supervised
model (M2), we introduce an inference model for each of the latent variables z and y, which we we
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Approximate samples from the posterior distribution over the latent variables p(z|x) are used as fea-
tures to train a classifier that predicts class labels y, such as a (transductive) SVM or multinomial
regression. Using this approach, we can now perform classification in a lower dimensional space
since we typically use latent variables whose dimensionality is much less than that of the obser-
vations. These low dimensional embeddings should now also be more easily separable since we
make use of independent latent Gaussian posteriors whose parameters are formed by a sequence of
non-linear transformations of the data. This simple approach results in improved performance for
SVMs, and we demonstrate this in section 4.

Generative semi-supervised model (M2): We propose a probabilistic model that describes the data
as being generated by a latent class variable y in addition to a continuous latent variable z. The data
is explained by the generative process:

p(y) = Cat(y|⇡); p(z) = N (z|0, I); p
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(x|y, z) = f(x; y, z,✓), (2)
where Cat(y|⇡) is the multinomial distribution, the class labels y are treated as latent variables if
no class label is available and z are additional latent variables. These latent variables are marginally
independent and allow us, in case of digit generation for example, to separate the class specifica-
tion from the writing style of the digit. As before, f(x; y, z,✓) is a suitable likelihood function,
e.g., a Bernoulli or Gaussian distribution, parameterised by a non-linear transformation of the latent
variables. In our experiments, we choose deep neural networks as this non-linear function. Since
most labels y are unobserved, we integrate over the class of any unlabelled data during the infer-
ence process, thus performing classification as inference. Predictions for any missing labels are
obtained from the inferred posterior distribution p

✓

(y|x). This model can also be seen as a hybrid
continuous-discrete mixture model where the different mixture components share parameters.

Stacked generative semi-supervised model (M1+M2): We can combine these two approaches by
first learning a new latent representation z1 using the generative model from M1, and subsequently
learning a generative semi-supervised model M2, using embeddings from z1 instead of the raw data
x. The result is a deep generative model with two layers of stochastic variables: p
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(x, y, z1, z2) =
p(y)p(z2)p✓(z1|y, z2)p✓(x|z1), where the priors p(y) and p(z2) equal those of y and z above, and
both p
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(z1|y, z2) and p
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(x|z1) are parameterised as deep neural networks.

3 Scalable Variational Inference
3.1 Lower Bound Objective
In all our models, computation of the exact posterior distribution is intractable due to the nonlinear,
non-conjugate dependencies between the random variables. To allow for tractable and scalable
inference and parameter learning, we exploit recent advances in variational inference (Kingma and
Welling, 2014; Rezende et al., 2014). For all the models described, we introduce a fixed-form
distribution q
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(z|x) with parameters � that approximates the true posterior distribution p(z|x). We
then follow the variational principle to derive a lower bound on the marginal likelihood of the model
– this bound forms our objective function and ensures that our approximate posterior is as close as
possible to the true posterior.

We construct the approximate posterior distribution q
�

(·) as an inference or recognition model,
which has become a popular approach for efficient variational inference (Dayan, 2000; Kingma and
Welling, 2014; Rezende et al., 2014; Stuhlmüller et al., 2013). Using an inference network, we avoid
the need to compute per data point variational parameters, but can instead compute a set of global
variational parameters �. This allows us to amortise the cost of inference by generalising between
the posterior estimates for all latent variables through the parameters of the inference network, and
allows for fast inference at both training and testing time (unlike with VEM, in which we repeat
the generalized E-step optimisation for every test data point). An inference network is introduced
for all latent variables, and we parameterise them as deep neural networks whose outputs form the
parameters of the distribution q
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(·). For the latent-feature discriminative model (M1), we use a
Gaussian inference network q
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(z|x) for the latent variable z. For the generative semi-supervised
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• M2: The lower bound for the generative semi-supervised model.

- Objective with labeled data:

- Objective without labels:

- Semi-supervised objective:

- actually, for classification, they use
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x

z
y

where �
�

(x) is a vector of standard deviations, ⇡
�

(x) is a probability vector, and the functions
µ

�

(x), �
�

(x) and ⇡
�

(x) are represented as MLPs.

3.1.1 Latent Feature Discriminative Model Objective

For this model, the variational bound J (x) on the marginal likelihood for a single data point is:

log p
✓

(x) � E
q�(z|x) [log p✓(x|z)]�KL[q

�

(z|x)kp
✓

(z)] = �J (x), (5)

The inference network q
�

(z|x) (3) is used during training of the model using both the labelled and
unlabelled data sets. This approximate posterior is then used as a feature extractor for the labelled
data set, and the features used for training the classifier.

3.1.2 Generative Semi-supervised Model Objective

For this model, we have two cases to consider. In the first case, the label corresponding to a data
point is observed and the variational bound is a simple extension of equation (5):

log p
✓

(x, y)�E
q�(z|x,y) [log p✓(x|y, z) + log p

✓

(y) + log p(z)� log q
�

(z|x, y)]=�L(x, y), (6)

For the case where the label is missing, it is treated as a latent variable over which we perform
posterior inference and the resulting bound for handling data points with an unobserved label y is:

log p
✓

(x) � E
q�(y,z|x) [log p✓(x|y, z) + log p

✓

(y) + log p(z)� log q
�

(y, z|x)]

=

X
y

q
�

(y|x)(�L(x, y)) +H(q
�

(y|x)) = �U(x). (7)

The bound on the marginal likelihood for the entire dataset is now:

J =

X
(x,y)⇠epl

L(x, y) +
X

x⇠epu

U(x) (8)

The distribution q
�

(y|x) (4) for the missing labels has the form a discriminative classifier, and
we can use this knowledge to construct the best classifier possible as our inference model. This
distribution is also used at test time for predictions of any unseen data.

In the objective function (8), the label predictive distribution q
�

(y|x) contributes only to the second
term relating to the unlabelled data, which is an undesirable property if we wish to use this distribu-
tion as a classifier. Ideally, all model and variational parameters should learn in all cases. To remedy
this, we add a classification loss to (8), such that the distribution q

�

(y|x) also learns from labelled
data. The extended objective function is:

J ↵

= J + ↵ · Eepl(x,y) [� log q
�

(y|x)] , (9)

where the hyper-parameter ↵ controls the relative weight between generative and purely discrimina-
tive learning. We use ↵ = 0.1 ·N in all experiments. While we have obtained this objective function
by motivating the need for all model components to learn at all times, the objective 9 can also be
derived directly using the variational principle by instead performing inference over the parameters
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Semi-supervised MNIST classification results

• Combination model M1+M2 shows dramatic improvement:

• Full MNIST test error: 0.96% (for comparison, current SOTA: 0.78%).
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Table 1: Benchmark results of semi-supervised classification on MNIST with few labels.

N NN CNN TSVM CAE MTC AtlasRBF M1+TSVM M2 M1+M2
100 25.81 22.98 16.81 13.47 12.03 8.10 (± 0.95) 11.82 (± 0.25) 11.97 (± 1.71) 3.33 (± 0.14)
600 11.44 7.68 6.16 6.3 5.13 – 5.72 (± 0.049) 4.94 (± 0.13) 2.59 (± 0.05)
1000 10.7 6.45 5.38 4.77 3.64 3.68 (± 0.12) 4.24 (± 0.07) 3.60 (± 0.56) 2.40 (± 0.02)
3000 6.04 3.35 3.45 3.22 2.57 – 3.49 (± 0.04) 3.92 (± 0.63) 2.18 (± 0.04)

4 Experimental Results

Open source code, with which the most important results and figures can be reproduced, is avail-
able at http://github.com/dpkingma/nips14-ssl. For the latest experimental results,
please see http://arxiv.org/abs/1406.5298.

4.1 Benchmark Classification
We test performance on the standard MNIST digit classification benchmark. The data set for semi-
supervised learning is created by splitting the 50,000 training points between a labelled and unla-
belled set, and varying the size of the labelled from 100 to 3000. We ensure that all classes are
balanced when doing this, i.e. each class has the same number of labelled points. We create a num-
ber of data sets using randomised sampling to confidence bounds for the mean performance under
repeated draws of data sets.

For model M1 we used a 50-dimensional latent variable z. The MLPs that form part of the generative
and inference models were constructed with two hidden layers, each with 600 hidden units, using
softplus log(1+ex) activation functions. On top, a transductive SVM (TSVM) was learned on values
of z inferred with q

�

(z|x). For model M2 we also used 50-dimensional z. In each experiment, the
MLPs were constructed with one hidden layer, each with 500 hidden units and softplus activation
functions. In case of SVHN and NORB, we found it helpful to pre-process the data with PCA.
This makes the model one level deeper, and still optimizes a lower bound on the likelihood of the
unprocessed data.

Table 1 shows classification results. We compare to a broad range of existing solutions in semi-
supervised learning, in particular to classification using nearest neighbours (NN), support vector
machines on the labelled set (SVM), the transductive SVM (TSVM), and contractive auto-encoders
(CAE). Some of the best results currently are obtained by the manifold tangent classifier (MTC)
(Rifai et al., 2011) and the AtlasRBF method (Pitelis et al., 2014). Unlike the other models in this
comparison, our models are fully probabilistic but have a cost in the same order as these alternatives.

Results: The latent-feature discriminative model (M1) performs better than other models based
on simple embeddings of the data, demonstrating the effectiveness of the latent space in providing
robust features that allow for easier classification. By combining these features with a classification
mechanism directly in the same model, as in the conditional generative model (M2), we are able to
get similar results without a separate TSVM classifier.

However, by far the best results were obtained using the stack of models M1 and M2. This com-
bined model provides accurate test-set predictions across all conditions, and easily outperforms the
previously best methods. We also tested this deep generative model for supervised learning with
all available labels, and obtain a test-set performance of 0.96%, which is among the best published
results for this permutation-invariant MNIST classification task.

4.2 Conditional Generation
The conditional generative model can be used to explore the underlying structure of the data, which
we demonstrate through two forms of analogical reasoning. Firstly, we demonstrate style and con-
tent separation by fixing the class label y, and then varying the latent variables z over a range of
values. Figure 1 shows three MNIST classes in which, using a trained model with two latent vari-
ables, and the 2D latent variable varied over a range from -5 to 5. In all cases, we see that nearby
regions of latent space correspond to similar writing styles, independent of the class; the left region
represents upright writing styles, while the right-side represents slanted styles.

As a second approach, we use a test image and pass it through the inference network to infer a
value of the latent variables corresponding to that image. We then fix the latent variables z to this

6
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Conditional generation using M2
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(a) Handwriting styles for MNIST obtained by fixing the class label and varying the 2D latent variable z

(b) MNIST analogies (c) SVHN analogies

Figure 1: (a) Visualisation of handwriting styles learned by the model with 2D z-space. (b,c)
Analogical reasoning with generative semi-supervised models using a high-dimensional z-space.
The leftmost columns show images from the test set. The other columns show analogical fantasies
of x by the generative model, where the latent variable z of each row is set to the value inferred from
the test-set image on the left by the inference network. Each column corresponds to a class label y.

Table 2: Semi-supervised classification on
the SVHN dataset with 1000 labels.

KNN TSVM M1+KNN M1+TSVM M1+M2
77.93 66.55 65.63 54.33 36.02

(± 0.08) (± 0.10) (± 0.15) (± 0.11) (± 0.10)

Table 3: Semi-supervised classification on
the NORB dataset with 1000 labels.

KNN TSVM M1+KNN M1+TSVM
78.71 26.00 65.39 18.79

(± 0.02) (± 0.06) (± 0.09) (± 0.05)

value, vary the class label y, and simulate images from the generative model corresponding to that
combination of z and y. This again demonstrate the disentanglement of style from class. Figure 1
shows these analogical fantasies for the MNIST and SVHN datasets (Netzer et al., 2011). The
SVHN data set is a far more complex data set than MNIST, but the model is able to fix the style of
house number and vary the digit that appears in that style well. These generations represent the best
current performance in simulation from generative models on these data sets.

The model used in this way also provides an alternative model to the stochastic feed-forward net-
works (SFNN) described by Tang and Salakhutdinov (2013). The performance of our model sig-
nificantly improves on SFNN, since instead of an inefficient Monte Carlo EM algorithm relying on
importance sampling, we are able to perform efficient joint inference that is easy to scale.

4.3 Image Classification
We demonstrate the performance of image classification on the SVHN, and NORB image data sets.
Since no comparative results in the semi-supervised setting exists, we perform nearest-neighbour
and TSVM classification with RBF kernels and compare performance on features generated by
our latent-feature discriminative model to the original features. The results are presented in tables 2
and 3, and we again demonstrate the effectiveness of our approach for semi-supervised classification.
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